NWERC 2012 Problem Set

Discussion \& Solutions

A - Admiral

■ Two vertex-distinct paths, minimum cost.
1 Suurballe, or
2 network flow.

- Expand vertices: $v_{k} \Rightarrow v_{k}^{\text {in }} \rightarrow v_{k}^{\text {out }}$.

■ $\mathcal{O}(|E|)$ time for each (augmenting) path.

B - Beer Pressure

■ Random walk over n-dimensional lattice.
■ Iterate over all possible end states after voting.

- Find corresponding probabilities: (Dynamic Programming or Memoization)
- Accumulate probabilities for all the pubs
- If w is the number of non-dominate students, this algorithm is $\mathcal{O}\left(\frac{w^{n}}{n!}\right)$.
■ Smarter algorithms exist (e.g., closed form of probability of end states) but dynamic programming is sufficient.

C - Cycling

position

■ Only brake/wait immediately after a traffic light; otherwise max acceleration.

- For each traffic light, for each time it changes color, find the highest velocity that you can have there.
- Worst case: $(10 \text { lights } \times 580 \text { changes })^{2}=33640000$

D - Digital Clock

- Solution: Just try all possible answers!

■ For start time from 00:00 to 23:59 :
$t \leftarrow$ start time
For each input pattern p :
For all 28 segments s :
If segment s active in p : mark s as working
If p differs from t wrt s : mark s as broken
$t \leftarrow t+1$
If no segment is both working and broken :
Print answer start time
■ Worst case $=24 \times 60 \times 50 \times 28=2016000$ steps

E - Edge Case

- Count the number of sets of edges not containing any pair of adjacent edges.
- First, solve the problem for a linear graph of n nodes
- $F_{2}=2 \quad\left(\emptyset,\left\{\left(\begin{array}{ll}1 & 2) \\ \text {) }\end{array}\right)\right.\right.$
- $F_{3}=3 \quad\left(\emptyset,\{(12)\},\left\{\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}\right)$
- $F_{n}=F_{n-1}+F_{n-2}$
- Now extend this to a circular graph of n nodes
- Either do not use edge $(n, 1): F_{n}$ sets
- Or do use edge ($n, 1$): another F_{n-2} sets

■ $L_{n}=F_{n}+F_{n-2}=L_{n-1}+L_{n-2}$

- $L_{n}=$ Lucas numbers

F - Foul Play

Problem

- Given $n=2^{k}$ teams, and a team 1 such that
- for every team t that 1 cannot beat, 1 can beat a team t^{\prime} that can beat t, and
- 1 can beat at least half of the teams.
- Give a tournament where 1 wins.

Solution

- For every round (k in total) of the tournament:

1 Match as many teams t that beat 1 to teams t^{\prime} that can beat them, i.e., t
2 Let 1 play against a team from which it can win.
3 Let any remaining teams play against each other.
4 Remove the losers.

G - Guards (1/2)

Problem

- Given graph, place minimum number of guards k at vertices (halls) to monitor edges (corridors).
- Instance of the NP-complete (minimum) vertex cover problem.

Solution for general graphs
■ Search tree: branch on edges (u, v) : select (and remove) u or $v: \mathcal{O}\left(2^{k} \cdot(n+m)\right)$.
■ However k may be close to $n \leq 10000$.

G - Guards (2/2)

Use recursive structure: $\mathcal{O}\left(2^{10} \cdot(n+m)\right)$

- Compute recursively two solutions for each peripheral building: with and without a guard in the hall leading to it.
■ Use search tree to compute optimal solution for main building using these peripheral solutions.

ПLJERT2

H - Hip to be Square (1/2)

- Given an interval, find the subset with the least square product. Terrible complexity: $\left[|S| \leq 4899,2^{4899}\right.$ subsets]
■ If the interval S contains a square, return the least square. $\left[|S| \leq 138,2^{138}\right.$ subsets, but size $\left.\leq 12\right]$
- Reduce: Split each number in a square and primes: $n=a^{2} * p_{1} * p_{2} \ldots$
Remove numbers containing a unique prime. Cascading. If a prime occurs twice: combine.
$\left[|S| \leq 30,2^{30}\right.$ subsets, $\left.\binom{30}{12} \cong 10^{7}\right]$.

H - Hip to be Square (2/2)

- Make a priority queue Q , of subsets (products) ordered by value (and by size!). Invariant: If s is a square product of S, then Q contains a divisor d of s.
- Put the elements of S as singletons in Q .
- While $m=$ Q.dequeue is not a square:
choose a prime p that divides m.
multiply m with each n in S such that:
p divides n with odd exponent
n is not a member of the product m.
(keep track of the factors of the elements of Q.)
add all these products to Q. This keeps the invariant.
- If m is a square, it is the least square product.
| - |dol
- 2SAT:
- variable x_{i} : contestant i advances
- judges are clauses:
- " 14 " corresponds to $\neg x_{1} \vee x_{4}$.
- Choosing $x_{1}=1$ (in ex.), forces $x_{4}=1$.
- Propagation leads to:
- contradiction, or
- finding an independently satisfiable subset of clauses:

■ $I_{1} \vee I_{2}$: untouched
■ $\left(l_{1}=1\right) \vee I_{2}$: satisfied
■ $I_{1} \vee\left(l_{2}=1\right)$: satisfied
■ $\left(l_{1}=0\right) \vee I_{2}$: can propagate

- $I_{1} \vee\left(I_{2}=0\right)$: can propagate

■ $\left(l_{1}=0\right) \vee\left(l_{2}=0\right)$: "no"

- Very limited backtracking: $\mathcal{O}(n \cdot m)$.

J - Joint Venture

- Naive $\Theta\left(n^{2}\right)$ algorithm is too slow.

■ First, sort Lego pieces.

- Then, either
- keep two indices at resp. end of sorted array. Update indices depending on if their sum is too large or too small when compared to x.
- or, for each Lego piece, binary search for the difference between x and length of current piece.
- Gives $O(n \log n)$ behaviour.

K - Key Insight

■ Find out to which positions a letter may have moved.

- Which of n^{2} transpositions is consistent with all blocks.
- Take factorial per letter.

■ Careful consistency checking, e.g.

- Watch out for missing letters.
- Take into account all blocks.
- Accepted solutions: $\mathcal{O}\left(n^{3}\right)$

